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d welcome (5 min)
= Alison Hahn- US Department of Energy, Office of Nuclear Energy - LWRS Federal Program Manager
= Bruce Hallbert- National Technical Director, LWRS Program
= Jack Cadogan- Meeting Discussion Facilitator
= Ken Thomas- Pathway Advisor
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(d Nuclear Power Plants Market Perspective (20 min)
= Jack Cadogan, Meeting Agenda, Role of Nuclear Power Plants in Electricity Markets
= Ken Thomas, Function of Nuclear Power Plant / Opportunities and Challenges of FPOG
= Discussion with Stakeholders

(d Panel: R&D Progress and Accomplishments (60 minutes)
= Summary of TEAs, Richard Boardman
= Summary of FPOG tools and plans, Cristian Rabiti
= Summary of thermal energy extraction modeling, and testing, Tyler Westover
= Hydrogen plant safety analysis, Kurt Vedros
= Summary of demonstration project objectives and scope, Richard Boardman
= Q&A

(J Round-the-table input and comments (45 minutes)
= Summary of owner interests and questions
= Recommendations for timing and approaches to engage technology providers and industrial partners

J Next Steps (15 minutes)

= Next meeting time, format, and participation

= Research Leads follow-up with individual stakeholders

= Arranging meetings with technology and industrial stakeholders
= Other...

Summary and adjourn (5 minutes)
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LWRS.LA_ ... FPOG Key Stakeholder Meeting

‘._\/

w=or
(]

* Facilitators: Jack Cadogan and Ken Thomas
* Goals:

= Summarize the goals and current activities of the LWRS Flexible Plant Operations and Generation Pathway
= Provide an opportunity to discuss activities, plans, and progress of ongoing and planned R&D
= Identify interests for periodic stakeholder engagement and discuss future engagement options.
®* FPOG Key Stakeholder Engagement Group:
= Owners/Operators of nuclear power plants interested in learning or participating in research,
development, and demonstration activities to increase plant revenue through flexible plant operations

= Vendors and suppliers of candidate systems and needed technologies to enable development and
demonstration activities and their commercial deployment

= The Electric Power Research Institute and other research organizations that enable the development of
key capabilities needed to successfully develop and deploy these systems

= Nuclear Energy Institute, Nuclear Regulatory Commission, and other stakeholders

* Key Activities:
= Review LWRS Technical Program Plan for FPOG
= Discuss and recommend FPOG R&D activities and priorities
=  Recommend timing and approach to engage technology developer and industry stakeholders
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LWRS | | psgren Nuclear Plant 0peratlng Optlons
T — Nuclear Reactor Wind PV Solar
(PWR or BWR) D:I:DL@
LY Eﬁﬁﬂ {EEIED
* Flexible Power Operations (FPO)
- EPRI Studies and Guidance @ e | [tase
o Eight areas of potential impact Eneray “enorgy
* Dedicated energy supplier to an industrial e [ 3
process |
O Off grld Chemical Process Storage E E|e°t”°'ty e
o Steam and or electricity supply - . %@)
® H] [brld OperathnS i FPOG System Demand Control i

o Dispatch electricity between grid and industry user —

o Dispatch electricity and steam =r
o Provide grid services

* supply and demand response
- grid regulation \

Min Load

- 1‘ < >
Dispatch One Hour Reserve




LWRS () ssgerr Panel: FPOG R&D Activities

Summary of TEAs

Summary of FPOG tools and plans

Summary of thermal energy extraction modeling, and testing
Hydrogen plant safety analysis

Summary of demonstration project objectives and scope

Q&A
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d The purpose of this pathway is to diversify and increase the
revenue of light water reactors in the United States

(d The main goal is to reduce the technical and economic risks of o
commercial deployment of these systems and to help LWR T~ Steam Turbine/Gen Set 500 kv @@
===

Switchyard
Power

Offtake Line

owners implement and test the leading options. |

d  Three Activity Areas |

|. Energy Dispatch: The purpose of this activity is to develop
efficient electricity and thermal energy delivery systems and
conduct reactor operator human factors and control systems Pressurized Water
research that is needed to dynamically extract and deliver Reactor
thermal energy from a nuclear power plant for use by an Erchangers

industrial process.
Water

Il. Design and Economics: The purpose of this activity is to

A

[ Slipstream

Power
:lﬁ: Inverter
Thermal Energy DC
{ Delivery Loop O |

complete technical and economic assessments to evaluate — dronen
market opportunities for LWRs to supply electricity and steam Exchangers ﬁ Plant
or heat to produce non-electricity products.

lll. Safety Assessments: The goal of this effort is to ensure the
FPOG operations remain within the operating basis of LWRs
or to otherwise inform plant owners on license modifications
for relatively large percentages of LWR thermal energy
delivery to an industrial user.

Steam
Electrolysis
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LWRS_£ 0 &t Hydrogen Market Disruption
&—
Conventional Storage Hydrogen Fuel Cell Vehicles: $1.50 -3.00 / kg-HZ

Vehicle
Al

@

/ _ Hydrogen - ?

9. co, ‘j
' e

Symthetic Synthetic Fuels: $1.50 - 1.75 / kg-H,

Fuels

Lpgrading

0il / Refining: $1.25-2.00 / kg-H,

Biomass

Amirmonia)

Fertizer  Ammonia: $1.50-1.75 / kg-H,

Hydrogen
Generation

Metals

reining  Oteel: $1.00 - 1.25 / kg-H,

Electric Grid
Infrastructure

Other
End Use Float Glass: $1.25-1.75/ kg-H,

Heating

Gas Electronics: $3.00—-5.00 / kg-H,

Infrastructure

Clean H, value of CO, avoided: $10/tonne-CO2 avoided » -$0.10 / kg H,
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LWRS.LA_ ... FPOG System Modeling end Optimization
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* Goals e
o Deliver the capability to perform technoeconomic H e ’:\) N

assessment of FPOG systems: HERON
* NPV, IRR for long term projects

wmor

® Challenges EEE'&W
o Very long time scales UL
o Revenues depends on market interaction at short and
long term Nuclear Energy AS I S aeower | S
> multiple market and revenue streams L > = A= i S
> Probabilistic problem S Erre neray ; :
Thermal Electricity E S
° Approaches <B<—> — L el
o Focus on LWRS relevant problems $ 1 T — Ll E
o Leverages synergism with other programs and cemmmmmmnnnnee oeeeennees ) S §
laboratories : ’ 3
: ﬁ;‘;‘ES G, S—— Qe Natura
© NTEL é Intermediate High §
—— SIS a1 B )

Low Carbon Products: Fuel, Chemicals, Metals, Water, etc.
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Demand Clustered Training Data
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* Very long time scales * Revenues depends on market
_NPP life time extend for 60 to 80 interaction at short and long term

o Day head market
o Imbalance market
o Ancillary services

years, many power plants have in
excess of 20 years of residual lifetime

o Chemical plants life time is at least in
several tens of years

(-1
o

* multiple market and revenue 2 N T | o]
streams o 2
Probabilistic E 40r
o Heat market B
. revenue streams 8 30
o Hydrogen Profit g, l I
o Distribution .E
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® NPV optimization
® Optimization parameters
o Buy low
o Sell high
o Capacity H2 production
o Storage size
* Markets:
o Day head
o Hydrogen (demand curve)
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— Dispatch from NPPs
° High Level Approach

1. Full-scope, high fidelity NPP simulators with coupled thermal and electric power dispatch with human-

in-the-loop operations ‘

« Pro #1: Realistic simulations that support probabilistic risk assessments (PRAs), other licensing issues, and technoeconomic
assessments;

* Pro #2: Can capture realistic coupling between NPP and specific industry power user

* Con #1: Highly complex simulations are only as good as the underlying assumptions;

« Con #2: Simulations cannot qualify hardware and require validation

2. Limited-scope, pilot-scale simulators with coupled thermal and electric power dispatch with human-

and hardware-in-the-loop operations

« Pro #1: Hardware-in-the-loop tests probe vital interactions between systems that can be missed in purely digital simulations;
« Pro #2: Can qualify hardware and validate high fidelity models;

« Pro #3: Combines human and hardware factors — essential for coupling to new technologies, such as advanced low or high
___temperature electrolysis

« Con #1: Demonstration scale may not match commercial scale — need scaling functions;

* Con #2: Hardware requires substantial capital and time investments

D«

 Heat

Electricity



Presenter
Presentation Notes
Due to time constraint, we will only cover item #1: Full-scope, high fidelity NPP simulators with coupled thermal and electric power dispatch
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Develop, demonstrate and evaluate Thermal Power Dispatch
* Concept of operations to couple a nuclear power plant with a

hydrogen production plant
o HSI and Procedures

—

TPE TRIP. EHX-
HOTWELL

EHX-1VENT | [ EHX-1 meo] || TeoLtrip |[ TeoLraD |[ meo) |[ [meD) HTSE TRIP
ACTUATED || HOTWELL MONITOR
HIGH LEVEL || LOW LEVEL

Focuses on an iterative pomer
473« 7920 ' 589 99.1* —

operator-centered 675 5205 0Em 917k

design process R _—
== i | Human-System Interface | *
B e

Human-in-loop

NOTE: During warming, hot standby, and online modes EHX-1 Hotwell Level should be
operated between 60 and 70%.

VERIFY TP/

wrey el PYOcCedures

VERIFY TPE-3 (TPE-LCV-1002) is closed. N

VERIFY TPE-EHX-1 Vent is in auto mode.
Evaluate T

© ® N @ o

TURNONthe TEDL Pump.
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— Dispatch from NPPs

* Accomplishments

1. Developed Full-scope, High Fidelity Thermal Power Dispatch Generic PWR

Simulator (electric power dispatch is highly simplified)
+ Based on GSE ® GPWR simulator

2. Developed prototype Human/System Interface (HSI) and generic operating
procedures for integrated GPWR/hydrogen generation plant system

3. Performed human-in-the-loop tests with Thermal Power Dispatch GPWR
using operating procedures

Im————————————— ~ /
X e ~. TPE-6
— Steam Turbine/Gen Set 500 kV @ @ TPE-1
: W’ . HDR WJ 55555 > ,C:.\ @
o
! Il ot O
. m = - < FT-1001  FC-1000 (] e
| ndon ita L Comrolvabe FT-1000  VP-1000
1]
1 &) =
oy — e nt (VEN)
I
N [
| Pressurized Water s b&d oV Y TT-1006
" Reactor PO\ Tees PT-1006 CND
[N Y i o9 -
I PT-1003 10
1 <] lsolation Valve w) L @ @ T7-1002
| ™ : @ @ T 7 eT1002
: & 00 Trap (ST) TPES TPQH G \
1 v;‘xter 11l e (OR) ok ‘ J s
TPE-EHX-2 -
|l - - 1 @ Transmitter/Controller (T/C) ;‘Trwlrég;
Delivery Heat | iﬁi Hydrogen = 5"
1 Exchangers 1 Plant —— Flowmeter T @
________________
S 1pin InNstrumentation alagram or

thermal power extraction loop

%
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TPE TRIP EHX-1 VENT EHX-1 EHX-1 [TBD] TEDL TRIP TEDL RAD [TBD] [TBD] HTSE TRIP
ACTUATED HOTWELL HOTWELL MONITOR
HIGH LEVEL LOW LEVEL
TPE Flow TEDL Flow Adj Tref Rx Power
I i i [ ]
6 Hotwell Level 5 2 TPE Pressure Cond Vacuum 9 1 Turbine Load
% PSIG ____—— PSIG Mw
TPE o ‘ g [ ok sty || onne TPE and TEDL TEDL o ‘ g | ey
Mode Mode
Discharge TPE-6 TPE-9 TPE-15  TEDL-23 TEDL Inlet to TPE
Main Steam Press 1013.6 PSIG CND Inlet Flow FT-1007 7920.0 KPPH
Extraction Flow FT-1000 472.5 KPPH 0%  100% 100% Flow Control Valve TEDL-1 83.1 %
Warming Valve TPE-6 0.0 % Vent 1005, Control Mode FC-1007 AUTOMATIC
Control Valve TPE-1 125 % IGS2 L HTSE1 TPE-EHX-2 Shell Side
O
Contiell Mzl FEOLD MSHUBE — TEDLA2 > HTSE” (et Temperature  11-1007 333.8 DEGF
TPE-EHX-1 Shell Side TPE EFXT Hotwell Inlet Pressure PT-1007 645 PSIG
Inlet Temperature  TT-1001 475.0 DEGF T @ TEDLErXI il Tempgmitie 11083 R [DIEE P
Inlet Pressure ~ PT-1001 525.0 PSIG — Ol (FI-IES I 8
Qutlet Temperature TT-1002 431.9 DEG F TPE-EHX-1 Tube Side
Outlet Pressure  PT-1002 525.1 PSIG gL we7 g X TeEDL22 (1002 A Dutlet Temperature TT-1005 ATPIEE
Vent Valve TPE-9 0.0 % 1 || p— Outlet Pressure  PT-1005 29.2 PSIG
'LI'PEI-EHX-1 Ho:Tvu;(;(l)lz 0% TEETE o TPE-10 HTSE Electrical
evel = d 7
Leviel Control Valve TPE-3 74.8 % TPE-3 TPE-14 0% CND TEOLERE ?::irz;atte EEE_E[{JE ?):’H:MPS
Drain Valve TPE-10 0.0 % CND b TEDL21 TEDLA
5% 100%, H H H H

TPE-EHX-2 Tube Side mw HTSE-3 ;ﬁ,‘:g;“ Rad,'{:;':" M°"'tzf,'"~%w
Qutlet Temperature TT-1003 338.7 DEG F o B HTSE :
Qutlet Pressure  PT-1003 520.4 PSIG LS
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—_— Human-in-the-loop Tests with
Thermal Power Dispatch GPWR

° Four operators (40 years in nuclear with 18.5 years as operators)
o 2 Harris; 2 EPRI*
°* Remote Usability Format
o Web meeting platform with screen control
o Static “snapshots” or snaps of real simulator data — Generic PWR Model
* Four basic operating scenarios
1. Shutdown to Hot Standby
2. Hot Standby to Online
3. Online to Hot Standby
4. Hot Standby to Shutdown
* Findings and Issues

o Approach was validated - operators were able to execute the procedures and were comfortable with the system

w=or
(]

o Operators provided comments to improve the operating procedures and HSI
o Need more detailed model of coupling to industrial user for fully realistic simulations and testing.
o Detailed models need to come from pilot-scale hardware-in-the-loop tests.
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LWRS_LJ_ A Future Work

Grid-in-the-Loop

°* Human, and component tests with limited-
scope, pilot-scale coupled thermal and

electric power dispatch simulators

o Couple a 150+kW HTE system with Thermal
Energy Distribution System (TEDS) at INL for
human- and hardware-in-the-loop tests

o Used to validate simulator predictions and
hardware performance

o Used to validate simulator predictions and
hardware performance
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Main

/\- Steam Turbine/Gen Set 500 kv @ @-

* Licensing Pathways Al > Switchyars £
£
- 10 CFR 50.59 2 m
@) RG 1174 h ILDI”:’ "Coni.lenser .
HH H H » i @ { : - ll OfftaT(v;elrine
* Probabilistic Risk Assessment ——— A
. . Reactor
o Hazard analysis of generic PWR and BWR raction Hod e rome
Exchangers Thermal Energy DC Inverter

« Addition of Heat Extraction System
* H2 High Temperature Electrolysis Facility
Water

o ldentification of affected Licensing Basis Events
> Quantification of the effects on LBE initiators iy ﬂ ﬂ n“’;’.’;ﬂe“

o Quantification of the effects on CDF and LERF ——
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* Hazards Identified
o Internal to NPP

Steam line break in Heat Extraction System

LOOP frequency increase from HTEF accident

o External to NPP

HTEF hydrogen leak

HTEF hydrogen detonation

Evaluation of Safety Hazards
and Licensing Considerations

° PRA Effects on Mitigation
o Unisolated large steam leak scenario

0.5
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— Overpressure vs. Distance —8— MCA l '
- ]
" . - v : Lo.0
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— 0.7000 Detonation Cell Size
a —_ I 100
£ 0.6000 G | —————————
a2 = 0.3 . . . . . L 10-3
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: 0.4000 g Cell Size Gradient
2 o el
5 0.3000 20924
— o - y y y T - 104
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B Evaluation of Safety Hazards
and Licensing Considerations
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° Probabilistic Risk Assessment Results (Preliminary)

o Licensing Basis Events
 Initiating event frequencies within the 10 CFR 50.59 criteria @ 1km separation distance
* CDF and LERF well within Region Il of RG 1.174 criteria
o Sensitivity Studies

» Separation distance
* Number of HES isolation valves
« Steam versus heating oll

Region |

No Changes Allowed

Region |l

Small Changes

ACDF =

Region Il

Very Small Changes

10-5
More Flexibility with

® . .
Reg I 0 n I I Respect to Baseline CDF
106~ - - - - - - — ===

Region lll

105
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FPOG Pathway Activity Schedule
2019 2020 2021 2022 2023 2024

Techno/Economic Assessments Case Specific TEAs for Additional >

2025 2026 - 2030

Holistic Systems Evaluations LWRS

> Raven Validation and Application
Case-Specific PRA Support

Licensing Considerations with Engineering Measures >

RAVEN Tools Development

H, & Thermal Systems PRA

Electrical, Thermal, and Controls Interfaces Development & Verification

Case-specific Thermal Integration Support

Demonstration Project Schedule

2019 | 2020 | 2021 | 2022 I 2023 | 2024 I 2025 | 2026 - 2030

250 kWe HTE Demos 5-10 MWe Plants 50 - 200 MWe Plants > GWe Plants >
> 50 MW Thermal Integ. > 500 MW Thermal Integration >

Fuels Synthesis Demos >

Scale-up to Market Potential >
Electrochemical Ponmers> Scale-up to Market Potential >




LWR-H, Demonstration Projects: Exelon, USA

—

A
M E Xe lo n N Baseload generation
) Carbon-free Electric grid
nuclear

Partners: Nel Hydrogen, ANL, INL, NREL (via DOE) generation

On-site )
electrolyzer for
hydrogen
generation )7

Analysis Report: Evaluation of Hydrogen Production
for a Light Water Reactor in the Midwest

Purpose: ee!fsuppiyof

. . . . lant’s hyd
» Demonstrate hydrogen production using direct electrical D e o

power offtake from a nuclear power plant and acquaint On-site Peak power
plant operators with methods and controls for scaling up . Hydrogen generation
to large commercial plants. ! storage |

= Evaluate power offtake dynamics and inverter control B [ N et
response to provide grid contingency, ramping reserves, " g
and volt/reactive control reserve.

gas pipeline

Hydrogen
transportation

® Produce hydrogen for captive use by NPPs

= Produce hydrogen for first movers of clean hydrogen;
fuel-cell buses, heavy-duty trucks, forklifts, and industrial
users

Regional hydrogen On-site hydrogen user
market (e.g Gas turbine)

**Exelon will commence testing within 18-24
months at a to-be-announced LWR plant.


https://www.osti.gov/biblio/1559965-evaluation-non-electric-market-options-light-water-reactor-midwest
https://www.osti.gov/biblio/1569271-evaluation-hydrogen-production-feasibility-light-water-reactor-midwest

LWR-H, Demonstration Projects: Davis Besse, Ohio, USA

Hydrogen
Production
Area

**Commence testing in 24-36 months.

energy

Z— harbor
@ Xcel Energy*~
i Qaps
Industry Consortium of Energy
Power Harbor, Xcel Energy, Arizona
Block Public Service, DOE Labs

Purpose: Produce hydrogen for first movers of
clean hydrogen; fuel-cell buses, heavy-duty
trucks, forklifts, and industrial users

The engineering design team will design and
locate the hydrogen production equipment
such that the effect on the design and licensing
basis is mitigated (to the extent practical).

Analysis Report: Evaluation of Non-electric Market Options for a
Light-water Reactor in the Midwest



https://www.osti.gov/biblio/1559965-evaluation-non-electric-market-options-light-water-reactor-midwest
https://www.osti.gov/biblio/1559965-evaluation-non-electric-market-options-light-water-reactor-midwest

LWRS—L—L S Stake Holder Discussion

J Round-the-table input and comments (45 minutes)
= Summary of owner interests and questions
= Recommendations for timing and approaches to engage technology providers and
industrial partners

energy
~—— harbor

= Exelon. AN

Nebraska Public Power District

¢/ XcelEnergy- =PI Wolf Cree @

ELECTRIC POWER Nuclear Operating Corporatio
RESEARCH INSTITUTE

Daps A southern Nuclear 45 I[E)Il\IJEIEGY

——




LWRS_ () i##... Stake Holder Discussion

—

1 Next Steps (15 minutes)
= Next meeting time, format, and participation
= Research Leads follow-up with individual stakeholders
= Arranging meetings with technology and industrial stakeholders

= QOther...

Light Water Reactor Sustainability Program

Flexible Plant Operation and
Generation
Technical Program Plan for FY 2021
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Task Name » Q3 Q4 -:-21' Q2 Q3 Q4 -lé--'- Q2 Q3 o4 LC-:j Q2 Q3 o4 -:;- gz Q3 Q4 -.il-'f Q2 Q3 Q4 -Ei‘;' Q2 Q3 o4

« LWR Process Integration and Plant Design
Economics

Hydrogen & H2 Industries Plants s

Polymer Plants
Thermal User Industries I
Synthetic Fuels Plants L[]

Energy Storage
Refineries I
Energy Complexes, Jobs Anlaysis, Life-Cycle Benefits

+« FPOG Optimization in Regulated and Deregulated Markets S
RAVEN / HERON / TEAL Tools Development .
Deregulated Electricity Markets
Regulated Electricity Markets
Graphic User Interface with Model Release

New Release with Energy Storage Options

I
I

Real Time Optimization with Expanded Data Structure

Validate HERON for Real Time Optimization ——




LWRS LA i Interface Development

—_—

Task Mame -

<« Thermal Energy Dispatch Research and
Develoment

Generic PWR Full Scope Simulator for 5% Thermal Energy
Dispatch

PWR Simulator for 50% Thermal Energy Dispatch

Address Impact on PWR Core Heat Rate Stability

Validate Full-Scale Coupled Thermal Power Dispatch with
Human in the Loop

Full Scope Simulator BWR Thermal Energy Dispatch
Validate BWR Simulator with Human-in-the-Loop
Extend Support to LWE Owner Simulator Development

<« Hydrogen Plant Safety Analysis and PRA
Thermal Systems Heat Delivery Imtiative Event
Hydrogen Plant Safety Analysis
Preliminary PRA
FPOG Lisence Revision Approach




] Summary and adjourn (5 minutes)
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LWRS () e Future Work
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* Further development of Full-Scope Generic Simulator (FY2021)
o Add coupled electric power dispatch to Full Scope Thermal Power Dispatch GPWR
o Add high fidelity simulation of industrial user for realistic coupling between PWR and high temperature hydrogen generation plant
o Repeat human-in-the-loop tests with expanded operations that include maintenance, abnormal, and emergency scenarios

o Investigate other technical options:
1. Use steam as the heat transfer media (current simulator uses synthetic oil);
2. Further automate the controls of the integrated system;
3. Change industrial use industrial user to ammonia plant or other

* Develop Full-Scope Plant-Specific Coupled Thermal and Electric Power Dispatch Simulator (FY2021-FY2022)
o ldentify first mover PWR for simulator development/modifications
o Add industrial user plant response specific to high temperature hydrogen generation
o Validate simulator predictions
o Perform human-in-the-loop tests

o Make simulator available to address licensing issues and techno-economic questions
o Address other technical options...

* Repeat above work with BWR Simulator... (FY2022-FY2023)
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